Algebra II Dr. Paul L. Bailey Lesson 6 - Multiplying Binomials Monday, August 15, 2022

1. Multiplying Binomials

A *binomial* is an algebraic expression which is the sum or the difference of two terms.

We wish to understand the product of two binomials; that is, we wish to compute (a + b)(c + d). We use the distributive property to multiply this. Let x = (c + d). Then

$$(a+b)(c+d) = (a+b)x$$

= $ax + bx$ using right distribution
= $a(c+d) + b(c+d)$
= $ac + ad + bc + bd$

The mnemonic FOIL (First, Outer, Inner, Last) gives an order to how we find these last four terms. Use this technique to compute the following facts.

Example 1. Expand (x + 2y)(3z + 4).

Solution. I don't like the acronym FOIL (it is the distributive property), but let us go over how to use it anyway. The first terms are x and 3z, the outer terms are x and 4, the inner terms are 2y and 3z, and the last terms are 2y and 4.

• First:	$x \times 3z = 3xz$
• Outer:	$x \times 4 = 4x$
• Inner:	$2y \times 3z = 6yz$
• Last:	$2y \times 4 = 8y$

Add these up to get

$$(x+2y)(3z+4) = 3xz + 4x + 6yz + 8y.$$

Example 2. Expand $(a+b)^2$.

Solution. We have

$$(a+b)^2 = (a+b)(a+b) = aa+ab+ba+bb = a^2 + 2ab + b^2.$$

Example 3. Expand $(x-7)^2$.

Solution. Apply the formula above with a = x and b = -7. Then $(x - 7)^2 = x^2 - 14x + 49.$

Example 4. Expand (x - r)(x - s).

Solution. We have

$$(x-r)(x-s) = x^2 - xs - rx + rs = x^2 - (r+s)x + rs.$$

2. Squaring Binomials

Every student should memorize these facts.

Proposition 1. Let a and b be numbers. Then

- $(a+b)^2 = a^2 + 2ab + b^2$
- $(a-b)^2 = a^2 2ab + b^2$
- $(a+b)(a-b) = a^2 b^2$

Proposition 2. Let x be a variable. Then

• $(x-1)^2 = x^2 - 2x + 1$ • $(x+1)^2 = x^2 + 2x + 1$ • $(x+2)^2 = x^2 + 4x + 4$ • $(x-2)^2 = x^2 - 4x + 4$ • $(x-3)^2 = x^2 - 6x + 9$ • $(x+3)^2 = x^2 + 6x + 9$ • $(x-4)^2 = x^2 - 8x + 16$ • $(x+4)^2 = x^2 + 8x + 16$ • $(x-5)^2 = x^2 - 10x + 25$ • $(x+5)^2 = x^2 + 10x + 25$ • $(x-6)^2 = x^2 - 12x + 36$ • $(x+6)^2 = x^2 + 12x + 36$ • $(x-7)^2 = x^2 - 14x + 49$ • $(x+7)^2 = x^2 + 14x + 49$ • $(x-8)^2 = x^2 - 16x + 64$ • $(x+8)^2 = x^2 + 16x + 64$ • $(x-9)^2 = x^2 - 18x + 81$ • $(x+9)^2 = x^2 + 18x + 81$